Faculty of Engineering & Technology ### Fourth Year Bachelor of Engineering (Computer/IT) (To be Proposed For: Academic Year 2020-21) | Subject Code: CT703C-N | Subject Title: Natural Language Processing | |------------------------|--| | Pre-requisite | Basics of Probability and Statistics, Linear Algebra, Data Structure and | | | Algorithm | ## **Teaching Scheme (Credits and Hours)** | Teaching scheme | | | Evaluation Scheme | | | | | | | | |-----------------|-----|-----|-------------------|-----------------|-----|-------|-----------------|-------|--------|-------| | L | Т | Р | Total | Total
Credit | т | heory | Mid Sem
Exam | CIA | Pract. | Total | | Hrs | Hrs | Hrs | Hrs | | Hrs | Marks | Marks | Marks | Marks | Marks | | 04 | 00 | 02 | 06 | 05 | 3 | 70 | 30 | 20 | 30 | 150 | ## **Learning Objectives:** - Learn to analyse textual data - Learn various methods to represent text in vector form - Explore various application of NLP like Machine Translation, Text Summarization, Dialog system #### **Outline of the Course:** | Sr.
No | Title of the Unit | | | | |-----------|---------------------------------------|----|--|--| | 1 | Introduction to NLP | 6 | | | | 2 | N-Gram Language Model | 6 | | | | 3 | Text Representation | 10 | | | | 4 | Text classification and clustering | 8 | | | | 5 | MORPHOLOGY AND PART OF SPEECH TAGGING | 12 | | | | 6 | Text Parsing | 7 | | | | 7 | Semantic Analysis | 5 | | | | 8 | NLP Applications | 10 | | | Total hours (Theory): 64 Total hours (Lab): 32 **Total hours: 96** ## Faculty of Engineering & Technology ### Fourth Year Bachelor of Engineering (Computer/IT) (To be Proposed For: Academic Year 2020-21) ## **Detailed Syllabus:** | Sr.
No | Topic | Lecture
Hours | Weight age(%) | |-----------|---|------------------|---------------| | 1 | Introduction to NLP Introduction to NLP Text pre-processing: Regular Expression, tokenization Stemming Minimum Edit distance | 6 | 9 | | 2 | N-Gram Language Model Intro. N-Gram N-Gram probability estimation and perplexity Smoothing technique(Laplace/good
Turing/Kneser-Ney/Interpolation | 6 | 9 | | 3 | Text Representation Bag-of-word :Tf/IDF,Count vector Vector space Model Latent semantic Analysis Word embedding Word2Vec Glove fastText Sentence embedding Technique: Doc2Vec | 10 | 16 | | 4 | Text classification and clustering The text classification problem Feature Selection Naive Bayes text classification k- nearest neighbors Support vector Machine Flat Clustering K-means algorithm Hierarchical clustering | 8 | 12 | ## **Faculty of Engineering & Technology** Fourth Year Bachelor of Engineering (Computer/IT) (To be Proposed For: Academic Year 2020-21) | | | 1 | | |---|---|----|----| | 5 | MORPHOLOGY AND PART OF SPEECH TAGGING Morphology Part of speech Tagging - Rule-Based Part of Speech Tagging Markov Models - Hidden Markov Models Viterbi algorithms Maximum Entropy Models. Sequence Processing with Recurrent Networks Simple Recurrent Neural Networks Applications of Recurrent Neural Networks Deep Networks: Stacked and Bidirectional RNNs Managing Context in RNNs: LSTMs and GRUs Words, Subwords and Characters | 12 | 19 | | 6 | Text Parsing Syntax Parsing Grammar formalisms and treebanks . Parsing with Context Free Grammars Features and Unification Statistical parsing and probabilistic CFGs (PCFGs) | 7 | 11 | | 7 | Semantic Analysis Lexical semantics and word-sense disambiguation. Compositional semantics. | 5 | 8 | | 8 | NLP Applications Information Extraction, Introduction to Named Entity Recognition and Relation Extraction Question Answering Text Summarization Dialog System: Machine Translation | 10 | 16 | ### **Instructional Method and Pedagogy:** - At the start of course, the course delivery pattern, prerequisite of the subject will be discussed. - Lectures will be conducted with the aid of multi-media projector, black board, OHP etc. - Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation. - One internal exam will be conducted as a part of internal theory evaluation. - Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation. - Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation. ## Faculty of Engineering & Technology ### Fourth Year Bachelor of Engineering (Computer/IT) (To be Proposed For: Academic Year 2020-21) - The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures. - Experiments shall be performed in the laboratory related to course contents. #### **Learning Outcome:** - To Understand Document as Vector - Various Supervised and Unsupervised learning Method - Basic technique for language processing - Text analysis - Machine translation #### **Text Book:** - D. Jurafsky and J. Martin "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Third Edition draft - C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999 #### **List of Practical:** | Sr. No | Name of Experiment | | | |--------|--|--|--| | 1 | Basic Text Processing operation on text document. | | | | 2 | Implement N-gram Language model | | | | 3 | Write a program to extract features from text | | | | 4 | Implement word embedding using Word2Vec/Glove/fastText | | | | 5 | Implement LSA and Topic model. | | | | 6 | Implementation text classification using Naïve Bayes, SVM. | | | | 7 | Implementation of K-means Clustering algorithm on text. | | | | 8 | Implement PoS Tagging on text | | | | 9 | Implement text processing with neural network | | | | 10 | Implement text processing with LSTM | | | | 11 | Implement HMM/CRF on sequence tagging task | | | | 12 | Develop any one NLP application Sentiment Analysis | | | | | Chatbot Text Summarization Track Machine Translation Question/Answering | | |