

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

Subject Code: CT703C-N	Subject Title: Natural Language Processing
Pre-requisite	Basics of Probability and Statistics, Linear Algebra, Data Structure and
	Algorithm

Teaching Scheme (Credits and Hours)

Teaching scheme			Evaluation Scheme							
L	Т	Р	Total	Total Credit	т	heory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
04	00	02	06	05	3	70	30	20	30	150

Learning Objectives:

- Learn to analyse textual data
- Learn various methods to represent text in vector form
- Explore various application of NLP like Machine Translation, Text Summarization, Dialog system

Outline of the Course:

Sr. No	Title of the Unit			
1	Introduction to NLP	6		
2	N-Gram Language Model	6		
3	Text Representation	10		
4	Text classification and clustering	8		
5	MORPHOLOGY AND PART OF SPEECH TAGGING	12		
6	Text Parsing	7		
7	Semantic Analysis	5		
8	NLP Applications	10		

Total hours (Theory): 64

Total hours (Lab): 32

Total hours: 96

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

Detailed Syllabus:

Sr. No	Topic	Lecture Hours	Weight age(%)
1	 Introduction to NLP Introduction to NLP Text pre-processing: Regular Expression, tokenization Stemming Minimum Edit distance 	6	9
2	 N-Gram Language Model Intro. N-Gram N-Gram probability estimation and perplexity Smoothing technique(Laplace/good Turing/Kneser-Ney/Interpolation 	6	9
3	Text Representation Bag-of-word :Tf/IDF,Count vector Vector space Model Latent semantic Analysis Word embedding Word2Vec Glove fastText Sentence embedding Technique: Doc2Vec	10	16
4	Text classification and clustering The text classification problem Feature Selection Naive Bayes text classification k- nearest neighbors Support vector Machine Flat Clustering K-means algorithm Hierarchical clustering	8	12

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

		1	
5	 MORPHOLOGY AND PART OF SPEECH TAGGING Morphology Part of speech Tagging - Rule-Based Part of Speech Tagging Markov Models - Hidden Markov Models Viterbi algorithms Maximum Entropy Models. Sequence Processing with Recurrent Networks Simple Recurrent Neural Networks Applications of Recurrent Neural Networks Deep Networks: Stacked and Bidirectional RNNs Managing Context in RNNs: LSTMs and GRUs Words, Subwords and Characters 	12	19
6	 Text Parsing Syntax Parsing Grammar formalisms and treebanks . Parsing with Context Free Grammars Features and Unification Statistical parsing and probabilistic CFGs (PCFGs) 	7	11
7	 Semantic Analysis Lexical semantics and word-sense disambiguation. Compositional semantics. 	5	8
8	 NLP Applications Information Extraction, Introduction to Named Entity Recognition and Relation Extraction Question Answering Text Summarization Dialog System: Machine Translation 	10	16

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.

Faculty of Engineering & Technology

Fourth Year Bachelor of Engineering (Computer/IT)

(To be Proposed For: Academic Year 2020-21)

- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

- To Understand Document as Vector
- Various Supervised and Unsupervised learning Method
- Basic technique for language processing
- Text analysis
- Machine translation

Text Book:

- D. Jurafsky and J. Martin "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Third Edition draft
- C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999

List of Practical:

Sr. No	Name of Experiment		
1	Basic Text Processing operation on text document.		
2	Implement N-gram Language model		
3	Write a program to extract features from text		
4	Implement word embedding using Word2Vec/Glove/fastText		
5	Implement LSA and Topic model.		
6	Implementation text classification using Naïve Bayes, SVM.		
7	Implementation of K-means Clustering algorithm on text.		
8	Implement PoS Tagging on text		
9	Implement text processing with neural network		
10	Implement text processing with LSTM		
11	Implement HMM/CRF on sequence tagging task		
12	Develop any one NLP application Sentiment Analysis		
	 Chatbot Text Summarization Track Machine Translation Question/Answering 		